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Nanotronics was founded in 2010, initially offering the nSpec™, an automated optical 
inspection tool for a variety of precision manufacturing applications, including semicon-
ductor wafers and devices. 

The nSpec™ incorporates artificial intelligence for recognizing and classifying defects, 
allowing it to be more flexible than other automated optical inspection tools, usable in 
R&D labs and on production lines, for a variety of materials and types of substrates, 
bare and patterned wafers, and devices. We now have over 100 customers around  
the world.

Beginning in 2018, we developed our suite of process control products, nControl™, 
as a generalization of our inspection technology. nControl™ tools integrate a variety 
of sources of process data -- from optical inspection images such as those produced 
by nSpec™, to live video feeds of production, to data from sensors and actuators in 
process equipment -- to monitor and predict manufacturing performance, identify 
anomalies indicating process failures or security breaches, and to optimize production 
for greater yield.
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The semiconductor industry is under extraordinary pressures, due to the ongoing 
effects of the COVID-19 crisis, geopolitical instability, and continuing technological ad-
vancement.  Manufacturers are faced with the need to adopt new production process-
es as they bring new products to market and shift their supply chains.  

Nimbler adaptation -- reducing ramp times and time to market in new processes -- 
requires integrating data across numerous facilities and applications. End-to-end data 
visibility and analytics allows manufacturers to make strategic decisions based on all 
relevant information. 

Physical and digital systems must be integrated; the process data generated by each 
piece of equipment in a facility, the production data produced by each facility in a 
distributed manufacturing process, and the data from inputs and downstream products 
across the supply chiain, need to mesh to enable the production system as a whole to 
be responsive to changing requirements.
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Since 2012, the performance of deep learning algorithms on nearly every benchmark 
has grown exponentially. Deep learning algorithms, once an academic curiosity, now 
outperform humans at Go, drive cars autonomously, and predict protein structures. 

In manufacturing contexts, deep learning has become widely adopted in analyzing 
optical images for quality control.  The field of computer vision has existed for decades, 
but only in recent years have AI-based digital imaging technologies become able to 
compete with manual inspection.  

Another common AI manufacturing application is industrial data analytics for applica-
tions such as predictive maintenance and anomaly detection. Production equipment 
and sensors produce thousands of measurements and log entries per second; that 
data contains information that can be used to detect equipment in need of repair, rec-
ognize impending process failure, and analyze trends in production performance.  

AI control over industrial processes can even optimize performance directly; Google’s 
subsidiary DeepMind improved power efficiency by 15% in data centers by controlling 
the activity of servers, cooling systems, and other equipment.

Unlike traditional process modeling, nonparametric AI models can learn highly multivar-
iate relationships between variables and outcomes empirically, without reference to an 
a priori theoretical model. AI can detect patterns in data before humans can  
notice them.

Since AI models update as they incorporate more data, AI-based manufacturing ana-
lytics become more effective the longer they’re installed. As AI gains adoption across 
production processes and supply chains, autonomously self-improving factories will 
become a reality.
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Semiconductor manufacturing processes require exacting quality standards and con-
stant technological improvement. Semiconductor process control is used to maintain 
precise and reliable outcomes in each stage of production.

The state of the art in industrial process control, however, is still limited to fixed reci-
pes. The “right” target value for each process variable is hard-coded before production 
begins, and those target values are derived through a combination of theoretical and 
experimental analysis. 

nControl™, by contrast, uses real-time adaptive control for continuous optimization. 
That is, it adjusts target values continuously, within individual production runs, to opti-
mize desired quality metrics. 

The deep learning model in nControl™ learns the function that relates the recent state 
of the system to key performance indicators (KPIs) such as defect density and distribu-
tion, or other metrics of quality or productivity. 
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nControl™ :  The Next Stage in Semiconductor  
Process Technology  [cont.]
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nControl™  incorporates data from a variety of sources:

• Live feeds of sensor and actuator data, taken from programmable logic  
 controllers (PLCs) or the facility’s data historian
• Ex situ measurements produced by quality control and/or metrology
• Equipment and plant information such as P&ID diagrams and allowable ranges 
 for control variables
• Information from elsewhere in the enterprise resource planning system, such 
 as schedules, deliveries, etc
• Existing statistical process control rules

The nControl™ model ingests this data and learns a low-dimensional representation of 
the typical function of the process, including ordinary variations like startup and shut-
down, different operators, etc.  

This means that when process data is anomalous relative to the model’s predictions, 
operators can be alerted early to potential process failures.
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nControl™ :  The Next Stage in Semiconductor  
Process Technology  [cont.]
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Additionally, the nControl™ model learns the relationship between in-progress process 
data and quality and yield measurements of the final result of a production run.   This 
means that at each moment during production, nControl™ has a freshly updated pre-
diction of how the batch will turn out. 

nControl™ also simulates how KPIs will be affected by changes to process variables. 
This allows prediction of the impact of any observed excursion. 

Moreover, the ability to simulate the consequences of potential changes allows a re-
inforcement-learning model to suggest process changes that are predicted to improve 
batch quality, in real time during production. Suggested changes can either be present-
ed to a human operator for approval, or can be implemented automatically. (Of course, 
all nControlTM-generated changes to process variables are restricted to lie within fixed 
ranges defined by the process engineer.) 

This real-time adaptive control allows for much greater flexibility and ability to respond 
to variation. With nControl™, a batch can be “rescued” before quality problems occur.

Real-time adaptive control has advantages in a number of situations:

• Reducing process development time and eliminating ramp time for  
 new products
• Reliably transferring processes to new locations that may have different  
 environmental conditions
• Detecting and remedying process failures quickly
• Maintaining quality despite changes in environmental or other conditions
• Identifying new process improvements to increase yield and productivity
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Chemical Vapor Deposition /

Metalorganic Chemical Vapor  
Deposition (MOCVD) /

Physical Vapor Deposition /

Deposition of epitaxial layers or thin films is an ideal nControl™ application because it 
is prone to defects due to contamination or process conditions causing loss of  
crystal structure. 

Several of the most common epitaxial and thin film deposition processes are known to 
improve with adaptive control, as it can allow for more rapid and fine-grained adjust-
ment to process variation.

Chemical vapor deposition (CVD) is a popular class of methods for thin film deposition 
in electronics, photonics, and biomedical applications.  A vaporized volatile material 
is chemically reacted with other gases, at which point it becomes non-volatile and is 
deposited on the substrate. The flow of gas is typically under feedback control accord-
ing to gas mass. Deposition conditions such as gas flow and composition, tempera-
ture, pressure, etc, are optimized experimentally and set by recipe  The uniformity and 
stress of CVD-deposited materials generally depends on the uniformity of conditions 
inside the reactor, such as temperature.[1]  

Run-to-run process control was able to reduce the variation in thickness of PECVD-de-
posited amorphous silicon thin films from 5% to less than 1% within 10 batches.[2]

More sophisticated process control can make MOCVD reactors more reliable. Switch-
ing to adaptive temperature control from PID control reduced the temperature error 
from 3 degrees C to 0.3 degrees C.[3]  Using a computational fluid dynamics model 
to optimize the starting parameters of the MOCVD reactor reduced the coefficient of 
variation of a ZnO thin film’s thickness from 3.6% to 1.28%.[4]

Adaptive control can be used to more precisely hit pre-set target levels of process 
variables, and this can be expected to improve the repeatability and control of the 
process. Also, adaptive tuning of the target levels themselves, to account for irregular-
ities in the fluid dynamics and temperature fluctuations within the reactor, can further 
reduce the variability in the end product.

Physical vapor deposition methods such as atomic layer deposition (ALD) or pulsed 
laser deposition (PLD) involve vaporizing a material from a solid target with ion beams, 
electron beams, lasers, or magnetically confined plasma, and allowing the target mate-
rial to condense onto a substrate.

As with chemical vapor deposition, adaptive control of physical vapor deposition can 
be used to maintain more consistent control of process parameters. For instance, one 
study using a neural network model achieved temperature control within 0.1 degree C 
for a molecular beam epitaxy process for gallium arsenide, in half the time it took for a 
conventional PID controller to reach the target temperature.[5]
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Dry Etching /

Dicing /

Photoresist Deposition /

“Dry” etch procedures involve removal of material from a semiconductor using plasma 
or gas. It is useful for producing high aspect ratio structures that can’t be created with 
“wet etch” processes such as photolithography.  Precise control of the ion beam or 
gas flow and its angle of incidence is essential for accuracy in dry etching, and can 
produce either anisotropic or isotropic results.

Adaptive control methods in dry etching have been found to improve quality. A 
real-time adaptive model predictive control system (AMPC)  in a plasma etch reactor 
achieved the target levels of variables such as electron density and RF power with 
much less variability (21.3% reduction in ISE) than model predictive control (MPC).[6]  

Using real-time in-situ sensor and image measurements and adaptive algorithms, dry 
etching process variables can be tuned more precisely to achieve desired  
quality parameters.

Wafer dicing, which singulates wafers via sawing or laser cutting, is another process 
that depends on precise real-time control in order to avoid defects. Variables such as 
feed speed, rotation speed, and coolant flow can be tuned automatically. Irregularity in 
dicing can lead to cracks, misalignments, and other performance-limiting defects.

Adaptive control systems in dicing often improve reliability and quality.

A system for adaptive control of a multi-wire saw for silicon wafers produced far less 
variability in tension and position motion than a PID controller.[7]  Similarly, an adaptive 
control system for a diamond abrasive wire saw used on silicon carbide wafers intend-
ed to maintain a constant normal force, compared to a system that used a constant 
part feed rate, had less variation in normal force, 41% shorter processing time, and 
20% less surface roughness.[8]

A deep-learning based model for laser micromachining, which learned the relationship 
between microscopic images of the surface and the location of the laser, was able to 
stop machining in real time at precisely the point at which a copper layer was com-
pletely machined through.[6]

Using live sensor data (including imaging) and adaptive control systems, dicing and 
machining processes can be made more accurate, resulting in higher yields.

The deposition of photoresist can benefit from adaptive real-time control.  Thickness, 
uniformity, deposition rate, and adherence are highly dependent on variables like hu-
midity, viscosity, and the flow of adhesion-promoting substances. With in-line sensors 
and continuous optimization of process variables, nControlTM could improve the quali-
ty and reliability of photoresist deposition.
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Across the board, when adaptive control methods in semiconductor manufacturing 
processes are compared to simpler PID or MPC control algorithms, the adaptive  
methods achieve the target process values faster and/or with less variance than the 
simpler methods.

Moreover, adaptive control methods where feedback depends on real-time sensor 
measurements can produce better quality and reliability in the final product.

Flexible, continuous optimization techniques in which target values themselves shift in 
response to sensor measurements have not yet been implemented for most semicon-
ductor applications, but our internal experiments on additive manufacturing [9] have 
found that continuous optimization can improve quality parameters such as tensile 
strength in the final product. These results likely generalize to additive or subtractive 
manufacturing technologies in semiconductor applications which similarly involve the 
gradual buildup of 3-dimensional structures. 

Process control systems such as nControlTM  that flexibly adjust target values to 
empirical observations ought to be even more robust to variation in environmental con-
ditions and provide even higher quality than process control based on reaching fixed 
target values.
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